

Policy Manager 7.x Message Handler
Programming Guide

Trademarks
SOA Software and the SOA Software logo are either trademarks or registered trademarks of
SOA Software, Inc. Other product names, logos, designs, titles, words or phrases mentioned
within this guide may be trademarks, service marks or trade names of SOA Software, Inc. or
other third parties and may be registered in the U.S. or other jurisdictions.

Copyright
©2001-2014 SOA Software, Inc. All rights reserved. No material in this manual may be copied,
reproduced, republished, uploaded, posted, transmitted, distributed or converted to any
electronic or machine-readable form in whole or in part without prior written approval from
SOA Software, Inc.

Preface

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide iii

Table of Contents
POLICY MANAGER 7.X MESSAGE HANDLER PROGRAMMING GUIDE I

PREFACE ...4

What’s in this Guide? .. 4

Other Documentation .. 4

Customer Support ... 5

CHAPTER 1: MESSAGE HANDLER FRAMEWORK ARCHITECTURE6

Overview ... 6

Message Handlers .. 6

Handler Factories.. 7

Handler Chains ... 7

The Framework in the Agent Feature .. 7

The Framework in the Delegate Feature ... 9

The Framework in the Network Director Feature ... 9

CHAPTER 2: MESSAGE HANDLER FRAMEWORK API ..11

CHAPTER 3: MESSAGE HANDLER DEPLOYMENT ..13

CHAPTER 4: DEVELOPING A MESSAGE HANDLER ..16

Source Code ... 16

Bundle .. 18

Deployment... 19

Preface

Copyright © 2014, SOA Software, Inc. Policy Manager Message Handler Programming Guide 4

Preface

WHAT’S IN THIS GUIDE?
The Policy Manager 7.x Message Handler Programming Guide provides information about the SOA
Container Message Handler Framework. It describes the architecture of the framework, the API
of the framework, and how to deploy extensions to the framework.

It includes the following chapters:

• Chapter 1, "Message Handler Framework Architecture," describes the architecture of the
Message Handler Framework.

• Chapter 2, "Message Handler Framework API," provides an overview of the classes that
make up the Message Handler Framework API.

• Chapter 3, "Message Handler Deployment," describes how Message Handlers are deployed
to the Message Handler Framework.

• Chapter 4, "Developing a Message Handler," describes the process for developing and
deploying a Message Handler including source code examples.

• JavaDoc API documentation describing the Message Handler Framework API is available in
the \docs\apidocs folder of your SOA Software Platform release directory.

OTHER DOCUMENTATION
To effectively use this guide, you should have access to and a working knowledge of the
concepts outlined in the following Policy Manager product documentation:

• SOA Software Platform 7.x Installation Guide

• Policy Manager 7.x Online Help

Preface

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 5

CUSTOMER SUPPORT
SOA Software offers a variety of support services to our customers. The following options are
available:

Support Options:

Email (direct) support@soa.com

Phone 1-866 SOA-9876 (1-866-762-9876)

Email (Web) The "Support" section of the SOA Software website (www.soa.com)
provides an option for emailing product related inquiries to our support team.

Documentation Updates Updates to product documentation are issued periodically and are available
by submitting an email request to support@soa.com.

mailto:support@soa.com
http://www.soa.com/
mailto:support@soa.com

Chapter 1: Message Handler Framework Architecture

Copyright © 2014, SOA Software, Inc. Policy Manager Message Handler Programming Guide 6

Chapter 1: Message Handler
Framework Architecture

OVERVIEW
The SOA Software SOA Container utilizes an extensible Message Handler Framework for
executing business logic on messages. The framework is similar in many respects to the JAX-
RPC Message Handler Framework, however the SOA Software framework is not limited to
SOAP messages only.

The Message Handler framework provides a set of interfaces that can be implemented by
developers that would like to extend the base capabilities of a SOA Container. Many of the base
capabilities in the container are also implemented using the same framework.

The handler framework is used to process incoming and outgoing messages of web services.
The processing is typically constrained to binding specific logic, header processing, and minor
transformations. It is not intended to provide orchestration, content based routing, or major
transformations. Those capabilities should be pursued through the Virtual Service
Orchestration Framework.

The Message Handler Framework is utilized by individual features such as the Delegate, Agent,
and Network Director features. Due to the different purposes of the features, they each make
use of the framework in different ways. For example, the Agent only takes on the role of a
provider and processes incoming messages and therefore the framework is only used to handle
incoming messages. Conversely, the Delegate feature acts as a consumer and only processes
outgoing messages. The Network Director acts as a provider and consumer of services and
therefore the framework is used for processing both incoming and outgoing messages

In all the features, the Message Handler Framework is made up of the same fundamental
components, Message Handlers, Handler Factories, and Handler Chains. These components are
described in the next section.

MESSAGE HANDLERS
A MessageHandler is a Java class that is given a message from a message exchange to perform
some business logic. The handler may or may not make changes to the message. For example, it
may process a SOAP WS-Security header and remove it from the message, or it may store some
metrics about the message without making any modifications. The MessageHandler can
provide feedback that would dictate future processing of the message exchange, such as
returning a fault to the consumer.

Chapter 1: Message Handler Framework Architecture

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 7

HANDLER FACTORIES
A MessageHandler is constructed by a HandlerFactory. A HandlerFactory is presented context
by the framework that will be used to create the handler. As illustrated in upcoming sections,
the context will be different for certain factories based on how they are deployed in the
framework. Some examples of the context provided to factories are WSDL descriptions of a
service (service specific), WSDL descriptions of a specific operation (operation specific), or an
Effective WS-Policy (policy enforcement/implementation).

HANDLER CHAINS
A HandlerChain is a list of MessageHandlers that are invoked in order, each being given the
same message as context. The context supports the addition and retrieval of properties. This
allows MessageHandlers to associate data with a context without changing the message that a
subsequent handler in the chain can use in its business logic.

One HandlerChain is used to process both request (IN) and response (OUT) messages in TWO-
WAY message exchanges. The order of handler invocation for OUT messages is configurable.
Handlers can be called in reverse order for OUT messages.

Handler 1 Handler nHandler 2
IN

OUT
Figure 1-1

Or Handlers can be called in the same order as was followed for IN messages.

Handler 1 Handler nHandler 2
IN

OUT
Figure 1-2

A handler can dictate the flow of the HandlerChain by either reporting to the chain that a fault
has been encountered or that the handler believes all processing should stop and the exchange
should be completed. For example, if a handler encounters an error processing the SOAP WS-
Security header of a message, it can relay the error to the HandlerChain which will then relay
the error to the framework which will return a fault.

THE FRAMEWORK IN THE AGENT FEATURE
In the Agent feature the Message Handler Framework process all messages in exchanges
between an external consumer and a local service implementation.

Chapter 1: Message Handler Framework Architecture

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 8

Consumer Service Impl
Global/Binding

Handler 1

Global/Binding
Handler 2

Global/Binding
Handler n

Message
Handler 1

Message
Handler 2

WS-Policy
Handler Chain

Message
Handler n

WS-Policy
Handler 1

WS-Policy
Handler 2

WS-Policy
Handler n

... ...

... ...

Agent

Figure 1-3

The handlers deployed in the framework are organized into three separate groups,
global/binding handlers, message specific handlers, and WS-Policy handlers.

The Global/binding handlers are deployed as members of one HandlerChain. There is one
chain configured to handle all messages sent through the framework regardless of the service or
operation the message invokes. The handlers can be deployed to apply only to messages sent
through one binding (i.e., SOAP) or globally to messages sent through all bindings.

Message specific handlers are called after the global/binding handlers. There is one
HandlerChain created for each operation/message (IN, OUT, FAULT) of each service managed
by the Agent. In cases where an operation has more than one fault message defined, a
HandlerChain will be created for each fault. This allows each HandlerFactory to configure each
MessageHandler instance with exactly what needs to be done for the targeted operation
message, eliminating a lot of potential decisions that could slow down the overall message
processing.

WS-Policy handlers is the third group of handlers which are a subset of the message specific
handlers with the specific purpose to enforce WS-Policies. These handlers are created by
factories that are given the Effective WS-Policy for the given message in addition to the other
operation specific context. These handlers behave in the same fashion as other
MessageHandlers once configured in a HandlerChain. What sets them apart is the policy
context they receive at creation.

The WS-Policy handlers do not necessarily execute after the other message specific handlers.
The WS-Policy HandlerChain acts as just one handler in the operation specific HandlerChain.
The order in which it is invoked is defined during deployment time and will be discussed in a
subsequent section.

Chapter 1: Message Handler Framework Architecture

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 9

THE FRAMEWORK IN THE DELEGATE FEATURE
In the Delegate feature the Message Handler Framework process all messages in exchanges
between an internal consumer and a remote service provider.

Consumer
Impl

Provider
Global/Binding

Handler 1

Global/Binding
Handler 2

Global/Binding
Handler n

Message
Handler 1

Message
Handler 2

WS-Policy
Handler Chain

Message
Handler n

Global
Handler o

Global
Handler z... ...

...

...

Delegate

Message
Handler z

Message
Handler z

WS-Policy
Handler

Figure 1-4

Similar to the Agent, the handlers deployed in the framework are organized into three separate
groups, global/binding handlers, message specific handlers, and WS-Policy handlers. The only
difference in the Delegate case is that the WS-Policy handlers will implement policies rather
than enforce them.

THE FRAMEWORK IN THE NETWORK DIRECTOR FEATURE
As mentioned previously, the Network Director acts as an intermediary and therefore both a
provider and consumer. It incorporates the use of the framework similar to both the Agent and
the Delegate, but is more complex because of its multiple binding and mediation support.

Chapter 1: Message Handler Framework Architecture

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 10

Network Director

IN Binding 1
Consumer 1 Provider 1

IN Message
Handler

IN Message
Handler

Message
Handler

IN Binding n

IN Message
Handler

IN Message
Handler

Message
Handler

...

OUT Binding 1

IN Message
Handler

IN Message
Handler

Message
Handler

...
Provider nConsumer n

OUT Binding n

IN Message
Handler

IN Message
Handler

Message
Handler

Virtual Service Engine

IN Message
Handler

IN Message
Handler

 Message
Handler

Figure 1-5

The Network Director will support any number of bindings for both incoming and outgoing
message exchanges. Based on routing dictated by the Virtual Service engine, messages received
on one binding may or may not be forwarded on to the downstream service using the same
type of binding.

Every binding implementation is different. Third parties and customers themselves can
implement their own bindings. SOA Software developed bindings all incorporate the Message
Handler Framework in a consistent fashion. The handlers created and invoked within the
bindings may be different based on binding type, but the frameworks will still share a similar
organization.

For IN bindings, the framework is organized in the same fashion as the Agent. Each binding
only deploys binding handlers that are specific to the matching type of binding in addition to all
global handlers. There is one organizational difference however in the Network Director. In
Network Director the WS-Policy handlers are divided between the IN bindings and the Virtual
Service Engine. The Virtual Service Engine deploys all WS-Policy handlers for policies that are
attached to the abstract WSDL components of a Service (PortType, PortType Operation, and
Service). The IN bindings deploy the WS-Policy handlers that are specific to the concrete WSDL
components of a service (Binding, Binding Operation, and Port). This enables virtual services to
invoke other locally deployed virtual services while still having policies enforced.

For OUT bindings, the framework is organized in the same fashion as the Delegate with the
additional binding specific group described for IN bindings.

Chapter 2: Message Handler Framework API

Copyright © 2014, SOA Software, Inc. Policy Manager Message Handler Programming Guide 11

Chapter 2: Message Handler
Framework API

The core of the Message Handler Framework is composed of a small number of interfaces and
classes and includes an API for creating handlers. This section provides a brief description of
these interfaces and classes. A detailed description of the API can be found with the API
documentation installed with the Policy Manager product. A UML diagram of the primary
interfaces and classes of the framework is illustrated below.

+handleMessage()
+close()

«interface»
MessageHandler

+create()

«interface»
HandlerFactory

HandlerChainFactory ChainHandler

+getProperty()
+setProperty()
+getPropertyNames()
+getMessage()
+setMessage()
+getExchange()
+getParameterType()
+getMessageName()
+isMessageReadOnly()

«interface»
MessageContext

+getProperty()
+getPropertyNames()
+setProperty()

«interface»
HandlerContext

1

*

1

*

Figure 2-1

• The MessageHandler interface is implemented to provide the business logic to perform on a
message. The framework will invoke the handleMessage() method with a MessageContext
object. The same method is invoked for IN, OUT, and FAULT messages. Depending on
deployment, the same instance of a MessageHandler may or may not be called. The close()
method is invoked by the framework after it has completed all handler invocations for a
given message. This allows handlers to de-allocate resources and perform cleanup outside
the processing time of the message itself.

• The MessageContext interface gives a MessageHandler access to all the information the
framework knows about the message and exchange being processed. The message itself is
provided in the context as well as properties about the message that may have been created
from other handlers. The exchange is also available in the context. If processing an OUT

Chapter 2: Message Handler Framework API

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 12

message, the IN message will be available from the exchange. Also, properties that are
associated with the exchange as a whole can also be created and retrieved.

• The HandlerFactory interface is implemented to create instances of a MessageHandler
implementation. It is the HandlerFactory implementations that are deployed to the
framework. They in turn create the MessageHandler implementations when requested based
on how they are deployed. The HandlerFactory is given a HandlerContext that provides
contextual information that the factory can use to configure the instance of the
MessageHandler.

• The HandlerContext interface gives a HandlerFactory access to deployment information. For
example, if the HandlerFactory is deployed in the global group, it is given very minimal
information. However if the HandlerFactory is deployed in the message specific group, it is
given access to the WSDL that describes the message that will need to be processed.

• The ChainHandler is a MessageHandler implementation that aggregates a list of
MessageHandlers and invokes them in order. An author of a MessageHandler may find it
useful to aggregate other MessageHandlers in which case the ChainHandler would be ideal.

• The HandlerChainFactory is a HandlerFactory implementation that creates a ChainHandler.
It aggregates other HandlerFactory implementations that will create the MessageHandler
implementations that the ChainHandler will aggregate.

Chapter 3: Message Handler Deployment

Copyright © 2014, SOA Software, Inc. Policy Manager Message Handler Programming Guide 13

Chapter 3: Message Handler
Deployment

The Network Director, Agent, and Delegate use the OSGi (Open Services Gateway initiative)
framework for deploying features and extensions. The Message Handler Framework in each of
these environments will dynamically construct their chain of handlers by discovering OSGi
services that are published by OSGi Bundles.

The Message Handler Framework registers with the OSGi framework for services that
implement the HandlerFactory interface. It organizes the HandlerFactory services into groups
as described earlier through the use of attributes that the HandlerFactory services can use to
describe themselves. The following are the attributes the Message Handler Framework will use
to group services.

Name Description

name Names the handler. Can be used by another handler if it needs to
state a direct dependency on this handler (see before and after
attributes).

scope1 Indicates which organizational group the handlers from the
factory should be placed in. The values are:
● all – Deploy a MessageHandler instance for all messages.

This is a “global” handler.
● binding – Deploy a MessageHandler instance for a specific

type of binding (see binding attribute for which type).
● binding.operation – Deploy a MessageHandler instance for

each operation message. This is a “message” handler.

binding Indicates which binding (if the scope attribute value is binding)
the handlers from the factory should be deployed for.

role Indicates whether the handlers from the factory should be used
for IN messages (Agent and IN bindings) or OUT messages
(Delegate and OUT bindings). The values are:
● consumer – Used for OUT messages
● provider – Used for IN messages

before Specifies an ordering requirement or dependency within the

1 The scope attribute will have different values for WS-Policy Handlers which are not detailed in this
document.

Chapter 3: Message Handler Deployment

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 14

Name Description

group of handlers it is deployed to. The value is either the name
of another handler or the wildcard (*). If '*' is specified, the
handler must be placed before all other handlers in the group. If
multiple handlers have the same value, the framework will order
them in the order the OSGi framework discovers them.

after Specifies an ordering requirement or dependency within the
group of handlers it is deployed to. The value is either the name
of another handler or the wildcard (*). If ;'*' is specified, the
handler must be placed after all other handlers in the group. If
multiple handlers have the same value, the framework will order
them in the order the OSGi framework discovers them.

The following is an example of how handlers can be defined as OSGi services and what the
resulting invocation order will be. WS-Policy handlers are not included as they are described in
a separate technical note.

Defining the following services in an Agent:

Handler1
Name: Handler1
Scope: all
Role: provider

Handler2
Name: Handler2
Scope: all
Role: provider
Before: *

Handler3
Name: Handler3
Scope: binding
Binding: soap
Role: provider

Handler4
Name: Handler4
Scope: binding.operation
Binding: soap
Role: provider
After: Handler5

Handler5
Name: Handler5
Scope: binding.operation

Chapter 3: Message Handler Deployment

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 15

Binding: soap
Role: provider

, will result in the following deployment.

Handler2 Handler1 Handler3 Handler4Handler5

Figure 3-1

Handler1, Handler2, and Handler3 are in the same global/binding group and are deployed
first. Handler2 is given the first position in the invocation order because it specified a "before"
attribute of "*." Handler1 or Handler3 could have been second since there were no ordering
constraints on either one, but in this example Handler1 will be second. Handler4 and Handler5
are in the second message specific group. Handler5 will be deployed before Handler4 though
because of Handler4’s "after" attribute which referred directly to Handler5.

In the Delegate these same example services would be defined with the same attributes except
for the "role," which would be have the value of "consumer." The deployment order would be
the same.

Chapter 4: Developing a Message Handler

Copyright © 2014, SOA Software, Inc. Policy Manager Message Handler Programming Guide 16

Chapter 4: Developing a Message
Handler

This section will describe the steps necessary to develop and deploy a MessageHandler to a
SOA Container. The sample artifacts described are available in the samples directory installed
with the product.

In the example, a MessageHandler will be developed that will simply log the contents of the IN
and OUT messages of a message exchange. The MessageHandler will be a "global" handler and
can therefore be deployed to any binding.

SOURCE CODE
The source code of the LoggingHandler (a MessageHandler implementation) is as follows:

01) package com.soa.examples.handler.logging;
02)
03) import java.io.StringWriter;
04)
05) import javax.xml.transform.Source;
06) import javax.xml.transform.Transformer;
07) import javax.xml.transform.TransformerFactory;
08) import javax.xml.transform.stream.StreamResult;
09)
10) import com.digev.fw.log.Log;
11) import com.digev.fw.log.LogLevel;
12) import com.soa.message.handler.MessageContext;
13) import com.soa.message.handler.MessageFaultException;
14) import com.soa.message.handler.MessageHandler;
15)
16) /**
17) * MessageHandler implementation that logs the content of a message.
18) */
19) public class LoggingHandler implements MessageHandler {
20)
21) private static final Log log = Log.getLog(LoggingHandler.class);
22)
23) public void close(MessageContext context) {
24) // no cleanup necessary
25) }
26)
27) /* Logs the content of the message */
28) public boolean handleMessage(MessageContext context)
29) throws MessageFaultException {
30) try {
31) // get the message from the context
32) Source msgContent = context.getMessage().getContent();
33) // log the message content as an informative message
34) log.logText(msgToString(msgContent), LogLevel.INFO);
35) return true; // continue handler processing
36) } catch (Exception e) {
37) throw new MessageFaultException(e);
38) }

Chapter 4: Developing a Message Handler

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 17

39) }
40)
41) /* Transforms the Source content of a message to a String for
42) * logging.
43) */
44) private String msgToString(Source msg) throws Exception {
45) Transformer xformer =
46) TransformerFactory.newInstance().newTransformer();
47) StringWriter writer = new StringWriter();
48) StreamResult result = new StreamResult(writer);
49) xformer.transform(msg, result);
50) return writer.toString();
51) }
52) }

Figure 4-1

On line 32, the message content is retrieved from the message context as a
java.xml.transform.Source object. That content is converted to a String for logging using the
msgToString() method on lines 44 – 51. The SOA Software Logging Framework is used to log
the content to the SOA Container’s log file on line 34.

If any exception is thrown during the processing a fault will be returned to the consumer and all
remaining handlers in the chain will not be invoked. This is done by creating a
MessageFaultException in the catch block on lines 36 – 38. The MessageFaultException supports
defining fault context information such as a code and description. In this example, nothing is
provided except the causing exception which will result in a default fault code being used.

If the logic completes without exception the handler returns true on line 35. This indicates to the
framework that it should continue invoking handlers in the handler chain.

The close() method on lines 23 – 25 perform no function in this example. If the handler were to
have allocated resources that should be cleaned up only after the entire handler chain had
finished it’s processing, it would have been done here.

The source code of the LoggingHandlerFactory (a HandlerFactory implementation) is as
follows:

01) package com.soa.examples.handler.logging;
02)
03) import com.digev.fw.exception.GException;
04) import com.soa.message.handler.HandlerContext;
05) import com.soa.message.handler.HandlerFactory;
06) import com.soa.message.handler.HandlerRole;
07) import com.soa.message.handler.MessageHandler;
08)
09) /**
10) * Creates a LoggingHandler.
11) */
12) public class LoggingHandlerFactory implements HandlerFactory {
13)
14) public MessageHandler create(HandlerContext context,
15) HandlerRole role)
16) throws GException {
17) return new LoggingHandler();
18) }
19) }

Chapter 4: Developing a Message Handler

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 18

Figure 4-2

Since there is no configuration needed, the only step for the factory is to construct a new
LoggingHandler with the default constructor.

BUNDLE
The LoggingHandler and LoggingHandlerFactory classes need to be packaged in an OSGi
Bundle so that they can be deployed to the SOA Container. The LoggingHandlerFactory needs
to be published as an OSGi service so that the Message Handler Framework can load it. In this
example, Spring DM (Distributed Modules for OSGi) is used to construct and publish the
LoggingHandlerFactory OSGi service. Spring DM is not a requirement but is used here for
simplicity.

01) <?xml version="1.0" encoding="UTF-8"?>
02)
03) <!--
04) Spring definition for the logging handler OSGi integration.
05) -->
06) <beans xmlns="http://www.springframework.org/schema/beans"
07) xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
08) xmlns:osgi="http://www.springframework.org/schema/osgi"
09) xsi:schemaLocation="http://www.springframework.org/schema/beans
10)
 http://www.springframework.org/schema/beans/spring-beans.xsd
11)
 http://www.springframework.org/schema/osgi
12)
 http://www.springframework.org/schema/osgi/spring-osgi.xsd">
13)
14) <osgi:service interface="com.soa.message.handler.HandlerFactory">
15) <osgi:service-properties>
16) <entry key="name" value="examples.logging.factory"/>
17) <entry key="scope" value="all"/>
18) <entry key="role" value="provider"/>
19) </osgi:service-properties>
20) <bean
class="com.soa.examples.handler.logging.LoggingHandlerFactory"/>
21) </osgi:service>
22)
23) </beans>

Figure 4-3

The OSGi service is defined on lines 14 – 21. The service is published as an implementation of
the HandlerFactory interface using the "interface" attribute. The service has three attributes
defined on lines 15 – 19. The scope is "all" which indicates to the framework to deploy this
handler as a "global" handler to all bindings of the container. The role is "provider" which
indicates to the framework that the handler will process incoming messages to the container.
This would not work in the Delegate as the Delegate acts only as a "consumer."

The construction of the LoggingHandlerFactory is specified on line 20. Since only the default
constructor is needed to create the factory, there is nothing more than the identification of the
class to instantiate required here.

Chapter 4: Developing a Message Handler

Copyright © 2014, SOA Software, Inc. Policy Manager 7.x Message Handler Programming Guide 19

An OSGi Bundle must have a Manifest to define it's dependencies. The following is the Manifest
for this example.

01) Manifest-Version: 1.0
02) Bundle-ManifestVersion: 2
03) Bundle-Name: Logging MessageHandler Example
04) Bundle-SymbolicName: com.soa.examples.handler.logging
05) Bundle-Version: 1.0.0
06) Bundle-Vendor: SOA Software
07) Import-Package: com.digev.fw.exception;version="6.0.0",
08) com.digev.fw.log;version="6.0.0",
09) com.soa.message;version="6.0.0",
10) com.soa.message.handler;version="6.0.0",
11) javax.xml.transform,
12) javax.xml.transform.stream

Figure 4-4

Lines 01 – 06 hold general information about the Bundle. Lines 07 – 12 hold the package
dependencies for the Bundle. All packages not defined within the bundle that are imported by
code in the Bundle must be listed here. The only exceptions to this are packages that are in the
global classpath of the SOA Container such as the Java JRE and Spring packages. A full list of
the globally available packages is listed below.

DEPLOYMENT
An SOA Software SOA Container will have a folder on the file system with a name that matches
the key of the container seen in the Policy Manager console. Under that folder is a sub-folder
named "deploy." Bundles that provide extensions to the container, such as additional message
handlers, will be placed in the "deploy" folder. Upon restart of the container, the services
published within any Bundles in the "deploy" folder will be imported into the container and all
published handler factories will be deployed by the Message Handler Framework.

	Policy Manager 7.x Message Handler Programming Guide
	Table of Contents
	What’s in this Guide?
	Other Documentation
	Customer Support
	Overview
	Message Handlers
	Handler Factories
	Handler Chains
	The Framework in the Agent Feature
	The Framework in the Delegate Feature
	The Framework in the Network Director Feature
	Source Code
	Bundle
	Deployment

